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Abstract. For M ~ l l e r  scattering in a monochromatic laser field an energy conservation law is 
valid which differs considerably from that for free Mgller scattering. The consequences of 
this modified conservation law for the scattering energy are examined for strong circularly 
polarised laser fields. The laser field acts in two ways on the electrons, which experience 
both the collective phenomenon of an intensity-dependent energy shift, and can also absorb 
or emit laser quanta. The second effect produces a discrete energy spectrum. In most cases 
the intensity-dependent shift is covered by this discrete spectrum. For both effects 
approximate formulae and numerical results for the scattering energy of non-relativistic 
electrons are presented and the possibility of an experimental verification of these energy 
changes is discussed. 

1. Introduction 

In a previous paper on Msller scattering in a monochromatic circularly polarised laser 
field, resonances and intensity-dependent shifts of the off-resonance cross section were 
examined (BOs et a1 1979). In calculating the amplitude of this scattering process an 
energy-momentum conservation law was found which differed considerably from free 
Meiller scattering. (The notation is the same as in the previous paper; natural units are 
again employed): 

+& - b 1 - b 2 - r k  = O .  (1.1) 

ii, are the effective 4-momenta of the scattered electrons, el and b2 those of the 
incoming electrons, k is the wavevector and r is the net number of laser quanta 
absorbed or emitted by both electrons. The effective momentum was defined by 

where a is the amplitude of the laser field. The effective momentum fulfils a different 
mass shell relation: 

2 2  2 2 p' = m  ( l + v ) = : m *  

where v 2  is a dimensionless parameter characterising the intensity of the laser field: v2:=(s)2. 
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Hence the laser field acts on the electrons in two ways: 
(i) The moments are shifted from p to b, whereby the electrons obtain an effective 

mass m,. This effect can be explained by classical electrodynamics; the shift depends 
only on the (classical) parameter v 2  (Brown and Kibble 1964, Kibble 1965). For the 
quantum mechanical description of the effect it is important to recall that the electrons 
can emit and absorb a high number of laser quanta. 

(ii) If the number of the emitted laser quanta differs from the number of absorbed 
quanta, a discrete spectrum of momenta will be found in addition to the Y’ dependent 
shift. 

The modified conservation law leads to a new condition for the scattering energy 
E ;  : 

=(fi l+b2-b;  +rk)’=m;. ( 1 . 2 )  
When no laser field is applied E ;  is easily calculated from the quadratic equation 

(p1 + p 2  - p ;  )2  - m’ = 0. 

In the centre of mass system (CMS) one simply obtains E l  = E2 = E ;  =E;. Equation 
(1.2),  however, leads to an equation with fourth powers in E ;  and cannot be simplified 
by introducing a CMS. In general neither E = E ;  nor E = E ;  nor E ;  =Eh will be valid. 
Nevertheless, we introduced a CMS for the incoming electrons in our previous paper, 
because the formulae turned out to be shorter than for the laboratory system. In this 
CMS the momenta are 

pi = (E,  P), P Z  = ( E  -P), p ;  = ( E ; ,  Pi), p i  = ( E L  pi ) ,  

e := &(P, prl ), 

and the angles are defined by 

* := &(P, k), 4 := &(P’l, k). 
In the limit of a vanishing external field this CMS goes over into the normal CMS. It 
describes an experimental situation where the electrons come into the laser beam with 
equal and opposite momenta and interact within the laser field. 

The scattering angle must satisfy the condition 

-41 s e  s min($ +d,  277 - 4 - +). 

In this system equation ( 1 . 2 )  reads 

2E2 - 2EE + rw (2E - E ; + 1 p ‘1 1 cos 4 )  

( 1 . 3 )  

Thus the scattering energy depends on the intensity parameter v 2 ,  the laser frequency 
U,  the integer r, the energy of the incoming electrons and the angles $ and 4. 

In this paper we shall examine how the scattering energies depend on the various 
laser and electron parameters and in which parameter regions the changes of the 
scattering energy compared to free Mdler scattering are large enough for experimental 
verification. The special case r = 0 is treated in pi 2 .  Results for the general case are 
presented in pi 3. 

These intensity-dependent changes of the scattering energy are not merely kinema- 
tical effects as one might suppose; the Maller cross section in a laser field is an 
incoherent sum of partial cross sections corresponding to the r-dependent scattering 
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energies: d a  = Z, do;. The magnitude of da,  gives the probability with which an 
electron is scattered with energy E ;  ( r ) .  But the knowledge of the largest r for which da,  
is still of relevant magnitude is crucial for the determination of the largest change in 
scattering energy. Hence there is close correlation between the convergence of the 
series of da, i.e. how many r contribute to the sum, and the maximum deviation of E ;  
from the corresponding energy in free Mdler scattering. 

Due to technical difficulties the differential cross sections da,/dn for high laser 
intensities could only be calculated for non-relativistic energies, so that the convergence 
of the series is only known for this energy region. Therefore all considerations below 
are restricted to non-relativistic electrons. 

2. The scattering energies for r = 0 

In this special case the electrons emit as many laser photons as they absorb while 
traversing the laser field. Thus only the collective effect of the intensity-dependent shift 
of the electron energies can be examined. If equation (1.3) is cast in the form of a 
polynomial, one obtains an equation with fourth powers in E ;  and very complicated 
coefficients. Therefore a non-relativistic approximation formula will be given and in 
addition numerical results gained by iteration programs. In both cases it is easier to 
calculate first the momenta of the scattered electrons and then the energies. Appro- 
priate (dimensionless) parameters for these calculations are 

P := 1 P 1 / pi := Ipi I/m. 

(If c is not set equal to one, p is for small velocities approximately equal to u / c . )  The 
non-relativistic expansion of (1.3) yields 

p ,  = ( 1 + v2  cos2 4 )  
1 + v2  cos2 f#J 

(1 + v2)(sin2 - sin2 4 )  
p + v2  cos c/J p 2  + 0 ( P 3 ) .  2(1+ v2  cos2 f#J)2 

We shall discuss the relative difference between the kinetic energies of scattered and 
incoming particles: 

z ( r )  := ( E ;  kin ( r )  - E k i n ) / E k i n *  

With (2.1) we obtain for Zo := Z ( r  = 0 )  

2 cos2 ql- cos2 4 + v2  cos f#J( 1 + v2  cos2 4 )  (1 + v2)(sin2 4 -sin2 4 )  zo= v + O b 2 ) .  1 + v2  cos2 f#J 1 + v2  cos2 f#J (1 + v2  cos2 f#J)2 

(2.2) 

The maximum of the positive values of Z is found for 4 = 0", 4 = go", i.e. if the two 
electron beams are shot parallel and antiparallel to the laser axis into the field and are 
observed at right angles to the axis: 

ZOmax = v 2 + 0 ( p 2 ) .  

Hence for v2  = 1 the kinetic energy of a scattered electron differs from the initial value 
by 100% (whereas these energies coincide in free Maller scattering). For lasers with an 
intensity below v 2  = a measurement of this energy shift will not be possible. 
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The minimum of 2 is obtained for 4 = go", q5 = 0": 

Here the kinetic energy of one scattered electron is about 50% lower for v 2  = 1 than 

In figure 1 the numerical results for 20 as a function of q5 are presented for 
corresponding to a kinetic energy of 511 eV and for three angles $. 

The graphs of figure 1 are nearly independent of p .  Below p = 0.1 the p term of (2.2) 

E k i n .  

p = 4.47 x 

does not disturb the symmetry of the C$ curves. 

I .  
0 90 

4 (deg) 

Figure 1. Relative change of kinetic energy 20 as a function of q5 for v 2  = 1, Ekin = 511  eV 
and three angles #. 

If the energy and momentum of one scattered electron are known, the momentum 

(2.3) 
where n is a unit vector in the direction of the laser beam. For p ;  := Ips I /m we obtain 
p ;  = p i  + ( p 2  - p i z )  cos q5 + O(p3) .  Since the magnitude of p ;  differs from p i  only by 
terms proportional to p 2  and since the change in direction is small according to (2.3), we 
obtain 

of the second electron is easily calculated. From (1.1) we have 

p ;  = - p i  +n(E; +E; - 2 E )  

p ;  =-pi 

similar to free Mdler  scattering. 

3. The scattering energy for r f O  

For r # 0 a larger energy change can be expected, since in addition to the 'mass shift' of 
the electrons in the laser field each electron can absorb or emit laser quanta. According 
to (1.1) r > 0 means that r laser photons are absorbed by the electrons, whereas in the 
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case of r < O ,  r laser photons are emitted. As the energy of the laser quanta is small 
compared to the electron rest mass, the kinetic energy of the electrons will be affected 
mainly in the non-relativistic energy region by the absorption or emission of laser 
quanta. The change in energy will be large for high values of r and for electron kinetic 
energies of the same order of magnitude as the photon energy. Therefore these angles 
JI, (6 and 8 will be interesting at those values for which the convergence of do; is weak, 
i.e. where large r contributes to the cross section. For a Nd-glass laser, e.g. with 
w = 1.9 x 10i5s-' and for electrons with a kinetic energy of 5 eV, r = 10 is sufficient for 
rw = Ekin, whereas for 0.5 keV electrons, r = 1000 is needed. 

Before presenting approximation formulae and numerical results for the scattering 
energy, the experimental consequences of the correlation between energy shift and v 
convergence will be discussed. If do; is as large for several values of r as it is for r = 0, 
one finds-for fixed laser and electron parameters-electrons with different energies 
E ' ( r )  in the same solid angle. For non-relativistic electrons this discrete distribution of 
energies over a certain energy band should be broader than the statistical error of the 
energies detected experimentally. 

4. Non-relativistic approximation formulae 

Expanding (1.3) to second order in p and p i  and neglecting quadratic terms in 
6r := r ( w / m ) ,  we obtain 

+ jp2(1  + v2  cos2 * ) + S r [ l  +p2(1 +sin2 $11 ) + 0 ( p 2 ,  Sr2). 
Sr cos (6 

2(1+ v2  cos2 (6) 1 + v 2  cos2 (6 
p ;  = 

(4.1) 
In order to expand also the square root expression the cases 16r/p21 > 1 and 16r/p21 < 1 
must be treated separately. The first case means that the energy of the net number of 
photons emitted or absorbed by the two electrons is larger than the kinetic energy of the 
electrons. Hence large deviations from 2, may be expected, whereas for 16r/p2] < 1 the 
additional changes in energy will be smaller. 

For ISr/p21 > 1 we have 

1/2 p2(1 + Y 2  cos2 *) 1/2 Sr cos (6 Sr 
2(1+ v2  cos2 (6) - (1 + Y 2  cos2 (6 ) 2Sr(1+ v2 cos2 (6)1/2 

p ;  = 

p 2  (1 + v2  cos2 * ) 2  (8rl3l2 cos (6 
Sr 4(1+ v 2  cos2 (6) p2(1 + v2 cos2 (6)3/2* +(-) + (4.2) 

1 
2, -zo + (5) 

p 2  1 + v2 cos2 (6 

The additional terms are mainly determined by the magnitude of Sr/p2 .  For example: 
for 5 eV electrons, w / m  = (Nd-glass laser) and r = 100 one obtains Sr/p2  = 5 .  
Since in some cases such high values of r seem to be relevant because of the magnitude 
of the corresponding cross section, 2, may be much larger than Zo. 

For 16r/p21 < 1 we have 

Sr cos (6 +(E? [I + p 2 ( 1  +sin2 411 
1 + Y 2  cos2 (6 2(1+ v2 cos2 4) p 2(1+ v2 cos2 *p2 + p ;  = p( 1 + v2  cos2 *) 
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Again the corrections for Zo are determined mainly by S r / p 2 .  
For the measurement of the discrete energy spectrum E'(r)  the spacing of the 

energies is interesting. The difference between two adjacent energy values is given by 

AEki, ( r )  = (w/2m)( l+  v2  cos2 4)-' 
with 

Thus the magnitude of AEki, is determined by the laser frequency. For an infrared laser 
with w / m  = w / 2 m  corresponds to an energy difference of 0.25 eV, whereas for an 
ultraviolet laser with w / m  = one finds 2.5 eV. As in the case of the resonances the 
ultraviolet frequencies appear to be more favourable for experiment. 

Finally we wish to mention that a lower limit for r exists, since the two electrons can 
emit at most a number of laser photons corresponding to their kinetic energy. This 
lower limit follows from (4.1). One obtains 

r = -(mp2/w)(l + v2  cos2 J ~ ) + o ( ~ ~ ) .  
For example, the lower limit for w / m  = lo-', ,Eki,, = 25.5 eV and $ = 90" is r = -10. In 
many cases, however, the series of the partial cross sections converges before reaching 
this limit. 

5. Numerical results 

Figure 2 gives Z ( r )  as a function of 4. Since for each angle 4 the set of values r for which 
the partial cross sections du, must be summed is completely different, one should show a 
separate diagram of how 2 depends on r for each angle 4. Here another way was 
chosen: a representation as in figure 1 ,  but with two values Z for each angle 4. For the 
positive values of r the number r,,, is determined for which du ,  is still of a relevant 
magnitude, but where the further du, with r > rmax can be neglected; likewise rmin for the 
negative values of r. One may proceed like that because of the manner of convergence 
of du,: up to a certain value of r all du, are of the same order of magnitude as dgO. They 
differ by a factor of less than ten. The following du, however decrease very rapidly to 
zero. There is, of course, some freedom in the definition of rmax and rmin. We choose 
du,  ,,, = h max(du,), and analogously rmin. Although with v2  = lo-' a relatively small 
laser intensity was chosen, the energy change amounts to 20% at the maximum 
(4 = 135"). For this angle Zo is zero so that the energy difference is caused only by the 
absorption of laser quanta. 

According to the definition above there is a number of further points Z ( r )  for each 
angle 4 between the graphs for rmax and rmin. In experiments one should find all kinetic 
energies ELin ( r )  for r E [rmin, r,,,]. The probability with which each energy occurs is 
given by du,/dR. For the values of r between rmax and rmin the magnitude of dcr,/dR 
differs only by a factor ten by definition. There will of course be further energies beyond 
rmax and rmin but they will occur with a much smaller probability because of the rapid 
decrease of du,. To give an impression of the magnitude of rmax and rmin their values 
from figure 2 are given in table 1. 
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0 ldeg) 

Figure 2. Z(r)  as a function of q5 for v2=0.01, w / m  = 7 . 8 x  1014s-', Ekin=511 eV, 
$=450, e=/@-dl.  

Table 1. Maximum and minimum values of r as a function of scattering angle q5. 

9 

0" 
22.5" 
45" 
67.5" 
90" 

112.5" 
135" 

180" 
157.5" 

rmax 

200 
60 
0 

50 
200 
380 
450 
370 
200 

rmin 

-200 
-60 

0 
-60 

-200 
-330 
-360 
-320 
-200 

Calculations were also done for the same parameters as in figure 2, but for an 
ultraviolet laser with w = 8.0 x lot5 s-l ( ( w l m )  = The values of rmax and rmin 
turned out to be smaller by a factor ten so that the products r,,,(w/m) and rmin(w/m)  
which mainly determine 2, remained the same as for ( w / m )  = Thus nearly exactly 
the same graphs were obtained for the ultraviolet laser as in figure 2. 

For similar reasons 2, remains approximately the same when the electron energy is 
changed (within the non-relativistic region). Again one obtains the graphs of figures 2 
for v2  = and 5 eV electrons because the cross sections converge more rapidly for 
smaller electron energies. For changes in w the product r ( w / m )  remained constant. 
Here it is rm,,/p2 so that again the decisive factor rw/mp2 does not change (cf (3.2) and 
(3.3)). 

For technical computing reasons it is easier to calculate the convergence of the cross 
sections for v2  = 1 with high laser frequencies and low electron energies. From these 
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results one can draw inferences for higher electron energies and lower frequencies 
according to the arguments above. A plot is given in figure 3. Here the cross sections 
converge very rapidly because of the ultraviolet frequency and the small electron 
energy of 5 eV: rmax does not exceed r = 10 and rmin is limited to values above -3 (the 
lower limit causes the asymmetric form of the rmin graph relative to the graph for rmax). 

4 
0 90 

4 Ideg) 
10 

Figure 3. Z(r)  as a function of c$ for v 2  = 1, w / m  =8 x lo1' sC1, Ekin = 5 eV, # = 45", 
6 = I*-4. 

The energy change is quite large for p 2  = 1: the maximum of 2, amounts to 460% 
and is much larger than the maximum of Zo. Nevertheless the v 2  shift of the electron 
energies is an essential contribution here. So, for instance, the maximum of 2, is shifted 
from q5 = 135" towards 95" which corresponds to the maximum of Zo. Part of the rmax 
and rmin graphs coincides with the r = 0 graph; from q5 = 45" to 70" rmax and rmin are zero. 
In this region the energy change is caused exclusively by the v 2  shift. This is an 
important point. For all other angles-and also for the v 2 =  graphs of figure 
2-the v 2  shift is covered by the discrete energy spectrum for r f 0. Therefore a direct 
experimental test for the v 2  shift of the scattering energy is probably only possible for 
the interval of q!~ where the three graphs coincide. This q5 interval gets narrower, 
however, for higher energies and lower frequencies. In  addition Zo also decreases to 
zero. 

But in any case it should be possible to verify experimentally the considerable 
energy change caused by the v 2  shift and the absorption or emission of laser quanta 
together-and not only for v 2  = 1, but already for v 2  = lo-' as figure 2 shows. 

Finally, a problematical point must be mentioned. At the root of all calculations is 
the assumption of an infinitely extended laser field. But in reality the electrons spend 
only a finite time within the laser field. Therefore the maximal number of laser photons 
that can be absorbed or emitted by the electrons in this short time interval may be 
smaller than predicted from the pure mathematical considerations concerning the 
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convergence of the differential cross sections. If that is the case, the maximum of 2, will 
not be as high as in figures 2 and 3, but the magnitude of the pure v 2  shift of the 
scattering energy might be more important that is implied by the graphs of 
figures 2 and 3. 
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